Turbidite provenance in the Lower Palaeozoic Manx Group, Isle of Man: implications for the tectonic setting of Eastern Avalonia

D. J. BURNETT1 & D. G. QUIRK2

1Geology, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK (e-mail: dave_burnett73@hotmail.com)
2Amerada Hess Ltd., Grosvenor Place, London SW1X 7HY, UK (e-mail: Dave. Quirk@Hess.com)

The provenance of turbidites from the predominantly Arenig-aged Manx Group has been constrained using petrographical and geochemical techniques. Petrographical analysis of sandstones reveals that mono- and poly-crystalline quartz grains of cratonic origin are dominant. Major, trace and rare earth element concentrations in both sandstones and mudstones complement the petrographical data indicating that the source of the sediments consisted of quartzose basement and mature sedimentary rocks. There is little evidence of a juvenile volcanic input but a minor palaeovolcanic component of active continental margin affinity is present. There are indications of a more immature character in the oldest units but, on the whole, geochemical data from the Manx Group suggest an overall passive margin setting. These results suggest that Eastern Avalonia was attached to Gondwana during deposition of the Manx Group and that Iapetus oceanic crust did not subduct beneath the region before the end of the Arenig.

Keywords: Manx Group, Avalonia, Iapetus, provenance, geochemistry.

It is now well established that during much of the Early Palaeozoic Era the Iapetus Ocean separated the micro-continent of Eastern Avalonia to the south from the northern continent of Laurentia. According to Nance & Murphy (1994), Eastern Avalonia developed on an active continental margin around the West African part of Gondwana during the Neoproterozoic. After the margin became inactive (c. 580 Ma), stable platform conditions persisted through the Cambrian until two tectonic events occurred some time in the early Ordovician: (1) subduction of Iapetus oceanic crust beneath Eastern Avalonia and (2) rifting of Eastern Avalonia from Gondwana (e.g. Prigmore et al. 1997). However, there is considerable uncertainty over the timing of these events, particularly as to when an active margin became fully established along the northern edge of Eastern Avalonia (e.g. Kokelaar 1988; Barnes & Stone 1999).

The Lower Palaeozoic Manx Group makes up approximately three-quarters of the exposed strata on the Isle of Man (Fig. 1a). It comprises deep marine turbidites with subordinate debrises deposited on the northern margin of Eastern Avalonia during the Tremadoc and Arenig (Woodcock et al. 1999a; Molyneux pers. comm.; Fig. 1b). The Manx Group therefore holds potentially important information on the tectonic evolution of Eastern Avalonia. These exposures are also crucial in linking contemporaneous deposits in NW England and SE Ireland.

In this study the provenance of the Manx Group is determined using petrographical as well as major, trace and rare earth element data. Such data allow inferences to be made on the source of the sediments and their depositional setting.

Manx Group stratigraphy

Due to the presence of major faults (Quirk et al. 1999) and only limited palaeontological control (Molyneux 1999), the stratigraphy of the Manx Group cannot be constrained with great confidence. However, recent work by Woodcock et al. (1999b) and Quirk & Burnett (1999) has defined litho-stratigraphic units which have been further refined using chemostratigraphy by Burnett (1999) (Fig. 1a). Based mostly on their chemical compositions, the lithostratigraphic units have been grouped in this paper into three different types (Lonan-, Agneash- and Injebreck-types) (Fig. 2). These are primarily based upon characteristics initially defined by Barnes et al. (1999) and expanded on by Burnett (1999). The Lonan-type group (consisting of the Lonan, Santon and Ny Garvain Formations) is late Tremadoc–early Arenig in age. The Agneash-type group (Port Erin, Mull Hill, Creg Agneash and Maughold Formations) stratigraphically overlies the Lonan-type group and is therefore interpreted to be of an early–mid Arenig age. The Injebreck-type group is mostly mid–late Arenig although recent analysis of acritarch assemblages suggests that the Glen Dhoo and Glion Cam units were deposited in the Tremadoc (Molyneux pers. comm.) and are separated by a major fault from the rest of the Injebreck-type units (the Barrule, Injebreck, Glen Rushen and Creggan Mooar Formations). The relationship of the ‘early’ Injebreck-type units to the Lonan-type is problematic.

The Glen Dhoo and Glion Cam units are shown at the base of the succession in Figure 2 although their stratigraphic position relative to the rest of the Manx Group is uncertain. Despite limited outcrop, the Glen Dhoo unit contains mostly mudstone in its NW part but is dominated by quartz wackes to the SE while the Glion Cam unit is greywacke-prone. The Manx Group is dominated by quartz wackes in the Lonan, Santon and Ny Garvain Formations, followed by quartz arenites in the Creg Agneash and Mull Hill Formations (Fig. 2). The overlying Maughold Formation also contains quartz arenites but becomes increasingly mudstone-dominated upwards and younger units such as the Barrule, Injebreck, Creggan Mooar and Glen Rushen Formations are primarily composed of mudstone with occasional sandstone packages. Two minor occurrences of andesite, tuff and agglomerate (Simpson 1963), termed the Peel volcanics and Ballaquane volcanics, are present in the Manx Group although their stratigraphic position is uncertain as they lie close to a major fault (Fig. 1a).
Petrography

The main assumption behind sandstone provenance studies is that different tectonic settings contain characteristic rock types which, when eroded, produce sandstones with specific compositional ranges (Dickinson 1985). The analysis of sandstones with known provenance has been used to define these ranges from which the provenance of other samples can be deduced.

Sixty-one sandstone samples from the Manx Group were collected, wherever possible from the planar-laminated portions of the least weathered turbidites. Most stratigraphic units have at least three point-counted samples from them except for the Glen Dhoo unit (two samples), and the Lady Port and Creggan Mooar Formations (one sample each). The mudstone-dominated Barrule and Glen Rushen Formations have no petrographical samples due to a lack of suitable sandstones. The location of petrographical samples is given in Table 1.

Qualitative petrography

The analysed sandstones are very fine- to fine-grained or occasionally medium-grained. In general they are poorly...
<table>
<thead>
<tr>
<th>Lithostrat. unit</th>
<th>Sample</th>
<th>SC grid reference</th>
<th>QFL%</th>
<th>QmFL%</th>
<th>Matrix%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Q</td>
<td>F</td>
<td>L</td>
<td>Qm</td>
</tr>
<tr>
<td>Lady Port</td>
<td>C58</td>
<td>2767</td>
<td>8683</td>
<td>68.0</td>
<td>32.0</td>
</tr>
<tr>
<td></td>
<td>C62</td>
<td>2113</td>
<td>7758</td>
<td>78.0</td>
<td>22.0</td>
</tr>
<tr>
<td>Injebreck</td>
<td>C15</td>
<td>4176</td>
<td>9252</td>
<td>78.0</td>
<td>22.0</td>
</tr>
<tr>
<td></td>
<td>C17</td>
<td>4202</td>
<td>9113</td>
<td>99.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>C33</td>
<td>3831</td>
<td>8798</td>
<td>98.3</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>C52</td>
<td>2157</td>
<td>7451</td>
<td>97.3</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>DJB4</td>
<td>3766</td>
<td>9131</td>
<td>100.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Maughold</td>
<td>A11a</td>
<td>3866</td>
<td>8539</td>
<td>100.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>C10</td>
<td>1843</td>
<td>6993</td>
<td>97.0</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>C12a</td>
<td>2065</td>
<td>7161</td>
<td>94.3</td>
<td>5.7</td>
</tr>
<tr>
<td>Creg Agneash</td>
<td>A13</td>
<td>4231</td>
<td>8615</td>
<td>98.7</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>A15</td>
<td>4496</td>
<td>8944</td>
<td>100.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>P16a</td>
<td>3902</td>
<td>8403</td>
<td>100.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>P17a</td>
<td>3902</td>
<td>8403</td>
<td>99.3</td>
<td>0.7</td>
</tr>
<tr>
<td>Mull Hill</td>
<td>C41</td>
<td>1942</td>
<td>6962</td>
<td>100.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>C18</td>
<td>3795</td>
<td>7510</td>
<td>96.7</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>C40</td>
<td>3831</td>
<td>7499</td>
<td>84.7</td>
<td>15.3</td>
</tr>
<tr>
<td></td>
<td>C48</td>
<td>3699</td>
<td>7350</td>
<td>76.3</td>
<td>23.7</td>
</tr>
<tr>
<td>Port Erin</td>
<td>C11</td>
<td>1942</td>
<td>6962</td>
<td>100.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>C41</td>
<td>2960</td>
<td>6722</td>
<td>90.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Ny Garvain</td>
<td>C20</td>
<td>4884</td>
<td>9097</td>
<td>96.2</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td>DJB1</td>
<td>4850</td>
<td>8945</td>
<td>86.0</td>
<td>14.0</td>
</tr>
<tr>
<td></td>
<td>DJB2</td>
<td>4805</td>
<td>8901</td>
<td>88.6</td>
<td>11.4</td>
</tr>
<tr>
<td>Santon</td>
<td>A1</td>
<td>4399</td>
<td>8112</td>
<td>88.3</td>
<td>11.7</td>
</tr>
<tr>
<td></td>
<td>A17a</td>
<td>3725</td>
<td>7354</td>
<td>85.9</td>
<td>14.1</td>
</tr>
<tr>
<td></td>
<td>A17b</td>
<td>3725</td>
<td>7354</td>
<td>87.1</td>
<td>12.3</td>
</tr>
<tr>
<td></td>
<td>A18a</td>
<td>3874</td>
<td>7440</td>
<td>89.3</td>
<td>10.7</td>
</tr>
<tr>
<td></td>
<td>B3</td>
<td>4204</td>
<td>7827</td>
<td>99.7</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>C40</td>
<td>3831</td>
<td>7499</td>
<td>84.7</td>
<td>15.3</td>
</tr>
<tr>
<td></td>
<td>C48</td>
<td>3699</td>
<td>7350</td>
<td>73.7</td>
<td>26.3</td>
</tr>
<tr>
<td></td>
<td>C50</td>
<td>3673</td>
<td>7333</td>
<td>88.7</td>
<td>11.3</td>
</tr>
<tr>
<td></td>
<td>C51</td>
<td>3666</td>
<td>7329</td>
<td>81.7</td>
<td>18.3</td>
</tr>
<tr>
<td></td>
<td>P1a</td>
<td>3865</td>
<td>7445</td>
<td>98.0</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>P4a</td>
<td>4180</td>
<td>7805</td>
<td>93.0</td>
<td>7.0</td>
</tr>
<tr>
<td>Keristal</td>
<td>C19</td>
<td>9990</td>
<td>7727</td>
<td>99.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>C43</td>
<td>3062</td>
<td>6975</td>
<td>99.3</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>P19</td>
<td>4345</td>
<td>8150</td>
<td>87.0</td>
<td>13.0</td>
</tr>
<tr>
<td>Lonan</td>
<td>C2</td>
<td>3475</td>
<td>9018</td>
<td>98.7</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>C59</td>
<td>2962</td>
<td>8867</td>
<td>80.2</td>
<td>19.8</td>
</tr>
<tr>
<td>Glen Dhoo</td>
<td>C2</td>
<td>3475</td>
<td>9018</td>
<td>98.7</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>C60</td>
<td>2943</td>
<td>8821</td>
<td>88.0</td>
<td>12.0</td>
</tr>
<tr>
<td>Glion Cam</td>
<td>P1a</td>
<td>3865</td>
<td>7445</td>
<td>98.0</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>P1c</td>
<td>3865</td>
<td>7445</td>
<td>97.0</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>P15a</td>
<td>2909</td>
<td>8758</td>
<td>84.0</td>
<td>12.0</td>
</tr>
</tbody>
</table>
sorted, with constituent grains commonly angular to sub-angular with low to moderate estimated sphericity although the most quartzose lithologies often consist entirely of sutured and/or polygonized quartz. Well-rounded grains have also been observed but these are rare.

Quartz. Quartz, and specifically monocrystalline quartz, is the major detrital phase in the Manx Group. Common quartz is dominant in all samples although vein-derived quartz is also present. Inclusions of chlorite, muscovite and needles of rutile have been observed. The majority of quartz grains (69%) are strained. Overgrowths are not obvious.

Feldspar. After quartz, feldspar is the most abundant mineral phase, typically accounting for 4% of the grains. Of these, alkali feldspar, particularly orthoclase, is the most common. Orthoclase grains are usually untwinned but simple twinning is observed in some cases. Plagioclase is the second most abundant feldspar, with compositions in the albite–andesine range where this can be determined optically. A small minority of feldspar grains exhibit plate- and lath-like morphologies and these are usually plagioclase.

Lithic fragments. The Manx Group contains detrital lithic fragments of metamorphic, sedimentary and igneous origin, in order of decreasing abundance. Compositionally, the most abundant types of lithic fragment are polycrystalline quartz varieties. These are primarily metamorphic fragments and chert. The metamorphic grains are composed of 100% quartz except for a small number with schistose textures that contain aligned mica. Other polycrystalline quartzose fragments include quartz arenite and occasional grains of rhyolite. A small proportion of quartzose lithic fragments could not be positively identified and remain unclassified largely due to the difficulty in distinguishing between chert and rhyolite. Other fragments of igneous rock occur rarely and include granite (sometimes with granophyric texture), volcanic acid-intermediate clasts with aphanitic texture and rounded fragments of silicified ash.

Phyllosilicates. Phyllosilicates are generally confined to the matrix. However, elongate laths and small plates of white mica and chlorite are present in very low abundance.

Heavy minerals. A limited range of heavy minerals has been observed in thin-section. The most common are zircons, most of which are well-rounded. The second most abundant are well-rounded, green/brown tourmalines and rutiles, observed in two samples.

Matrix. The mean matrix content for sandstones from the Manx Group is 21%. Matrix is generally composed of finely comminuted and altered lithic and feldspathic fragments, quartz, chlorite, white mica, opaques and material too fine to be identified. It is uncertain as to how much of the matrix is primary and how much has been produced by the alteration of feldspars and lithic fragments. However, some of the matrix is clearly ‘pseudomatrix’ as defined by Dickinson (1970) representing altered detrital framework grains.

Quantitative petrography
Quartz, feldspar and lithic fragment contents of Manx Group samples have been plotted on a QFL diagram with the provenance fields of Dickinson et al. (1983) superimposed (Fig. 3). This figure illustrates the quartzose, mineralogically mature nature of the Manx Group with the majority (88%) of the Manx Group clustering comfortably within the craton interior field and only seven samples plotting outside. The Santon Formation and Glion Cam unit contain the most immature sandstones with samples plotting in the transitional area between craton interior and basement uplift provenances. Samples from the Creggan Mooar and Lady Port Formations and the Glen Dhoo unit also plot in this zone although the smaller sample sets for these intervals make their significance more questionable.

The majority of samples occupy the same provenance fields on Dickinson & Suczek’s (1979) QmFLt (monocrystalline quartz-feldspar-total lithic fragments) plot, reflecting the
PROVENANCE OF THE MANX GROUP

low proportion of polycrystalline lithic fragments (Burnett 1999).

Seven petrographical samples from the Manx Group were analysed by Moore (1992). These were more heterogeneous than those in this study with samples split between the craton interior field and the quartz-dominated part of the recycled orogen field on the QFL diagram. Morris et al. (1999) reported six coarse-grained sandstone samples from Purt Veg (part of the Santon Formation) as plotting in the recycled orogen field of Dickinson et al. (1983). The probable reason for the discrepancy between the results of Morris et al. (1999) and those of this study is the difference in grain-size. Although the Gazzi-Dickinson point-counting technique significantly reduces the grain-size effect, it cannot compensate for the increased proportion of lithic fragments within sediments at the coarser end of the spectrum, especially where these fragments are of silt-grade or finer and therefore included within the lithic count. Nonetheless, both Morris et al.’s (1999) and Moore’s (1992) data suggest that a component of the Manx Group may have been derived from recycled orogenic material.

Discussion of petrographical results

Quantitative analysis of the Manx Group samples in the form of QFL (Fig. 3) and QmFlI plots (Burnett 1999) suggest that the sediment was derived almost exclusively from a craton interior. The Glion Cam unit and Santon Formation contain the most immature sandstones and these are among the oldest samples (Tremadoc–early Arenig) (Molyneux pers. comm.).

Qualitative petrography also provides important information on the nature of the source area. The high proportion of quartz (and quartzose lithic fragments) as well as the dominance of alkali feldspar over the more chemically unstable plagioclase in the Manx Group suggests that the source was exposed to prolonged weathering and that the sediment is of silt-grade or finer and therefore included within the lithic count. Nonetheless, both Morris et al.’s (1999) and Moore’s (1992) data suggest that a component of the Manx Group may have been derived from recycled orogenic material.

Geochemistry

Geochemical investigation of the Manx Group has been carried out by analysing 116 samples for major and trace element content of which 63 are sandstones and 53 mudstones. The results for 97 of these are reported in Burnett (1999). The data for a further 19 samples collected to fill gaps in coverage are listed in Table 2. The analyses were determined using X-ray fluorescence (XRF) spectrometry at the University of Keele following the method of Norrish & Hutton (1969). In addition, the rare earth element (REE) concentrations of 35 of the sample group were analysed at Oxford Brookes University. 0.5 g of powdered sample was added to 1.5 g of flux (LiBO3), fused for 30 minutes at 1000 °C and then added to a mixture of 70 ml of 2N HCl and 40 ml distilled de-ionized water. After ion exchange chromatography, REE concentrations were analysed using an inductively-coupled plasma atomic emission spectrometer (ICP-AES). Blank samples were run in conjunction with Manx Group samples to assess contamination. The precision of the method used was assessed through repeat analyses of samples and is ±1.5% expressed as standard error. Further details of the REE analysis method used are given in Burnett (1999).

Bivariate plots have proved effective in defining chemostrophic sub-divisions of the Manx Group. Two examples are shown in Figure 4 which clearly differentiate Lonan-type sandstones from Agneash-type in terms of lower SiO2 content and higher amounts of Na2O, TiO2 and K2O. Lonan-type units also typically have higher concentrations of Al2O3, Ni, Th, Nb and Y (Burnett 1999). Mudstones are harder to discriminate but they do show the same general trends. Sandstones from Injebreck-type units show characteristics that are intermediate between Lonan-type and Agneash-type with Na2O higher than Lonan-type and SiO2, TiO2, Al2O3, Ni, Th and Y most similar to Lonan-type. No simple discrimination can be made between Injebreck units that are mid-/late Arenig in age and those in the NW corner of the island that have recently been dated by Molyneux (pers. comm.) as Tremadoc, although lithologically there are clear differences (Quirk & Burnett 1999).

As the chemostrophic trends in the Manx Group appear to have both temporal and spatial significance (Fig. 4), the variation is thought, at least in part, to be due to differences in provenance (Burnett 1999). Roser & Korsch (1986) have developed a bivariate tectonic discriminator which uses SiO2 contents and K2O/Na2O ratios for both sandstones and mudstones. The fields are based on ancient sandstone–mudstone pairs, cross-checked against modern sediments from known
Table 2. XRF analyses

Stratigraphic unit	Lady Port	Creggan Moor	Injebreck	Glion Cam	Glen Dho	Creggan Moor	Glen Rushen	Glen Dho	Creggan Moor	Glen Rushen	Glen Dho	Creggan Moor	Glen Rushen	Glen Dho	Creggan Moor	Glen Rushen	Glen Dho	Creggan Moor	Glen Rushen	Glen Dho	Creggan Moor	Glen Rushen	Glen Dho	Creggan Moor	Glen Rushen	Glen Dho	Creggan Moor	Glen Rushen	Glen Dho	Creggan Moor	Glen Rushen	Glen Dho	Creggan Moor	Glen Rushen	Glen Rushen	Glen Dho					
Sample no.	C58	C62	C52	C59	C63	C60	C66	C71	C53	C54	C51	C57	C69	C68	C67	C72	C71	C53	C54	C51	C57	C69	C68	C67	C72	C71	C53	C54	C51	C57	C69	C68	C67	C72	C71	C53	C54	C51	C57	C69	C68
Grid reference (SC)	8683	7758	7451	8676	8824	8212	9299	9150	7751	7751	7748	7853	8924	8934	7348	7469	8978	9189	9189	9189	9189	9189	9189	9189	9189	9189	9189	9189	9189	9189	9189	9189	9189	9189	9189	9189	9189	9189	9189	9189	9189

Major oxides (wt%)

- **SiO₂**
- **TiO₂**
- **Al₂O₃**
- **Fe₂O₃**
- **MnO**
- **MgO**
- **CaO**
- **Na₂O**
- **K₂O**
- **P₂O₅**
- **LOI**

Total 100.65

Trace elements (ppm)

- **Ba**
- **Ce**
- **Cl**
- **Cr**
- **Cu**
- **Ga**
- **La**
- **Nd**
- **Ni**
- **Pb**
- **Rb**
- **Sr**
- **Th**
- **V**
- **Y**
- **Zn**
- **Zr**

Major oxide values are quoted in weight % recalculated 100% loss on ignition (LOI) free.
tectonic settings. The plotted positions and the trend of the tie-line between the sandstone–mudstone pairs were considered to be characteristic of specific source types. With this, Roser & Korsch (1986) were able to differentiate between sediments derived from volcanic island arcs (ARC), active continental margins (ACM) and passive continental margins (PM). Associated with subduction zones, ARC-derived material is typical of fore-arc, back-arc and inter-arc basins formed on oceanic crust. ACM-derived material occurs in similar settings but on continental crust. PM sediments are derived from stable continental areas and deposited in intra-cratonic basins or on passive continental margins.

Using Roser & Korsch’s (1986) classification (Fig. 5), stratigraphic units in the Manx Group are PM- or ACM-derived. The samples that plot clearly within the PM field are dominated by quartz-rich sandstones of Agneash-type such as the Creg Agneash and Mull Hill Formations (Fig. 5b) although, in addition, most of the more matrix-rich sandstones of Injebreck-type are also classified as PM (Fig. 5c). The Lonan, Ny Garvain, Barrule and Glen Rushen Formations are more typical of an active continental margin although the significance of the data from the Barrule and Glen Rushen Formations is questionable as no sandstones were available.

Discriminant function analysis is another method for determining the provenance of sediments using geochemical data. This is a statistical technique that defines two values (function 1 and function 2) as weighted sums of the concentrations of specific major elements that best separate samples into groups defined by the tectonic settings of the source. The discriminant functions of Roser & Korsch (1988) use Al$_2$O$_3$, TiO$_2$, Fe$_2$O$_3$T, MgO, CaO, Na$_2$O and K$_2$O contents as the variables and were designed to discriminate between four sedimentary provenance types. These are: mafic (P1, ocean island arc source, similar to ARC-derived); intermediate (P2, mature island arc, also similar to ARC-derived); felsic (P3, ACM-derived); and recycled (P4, granitic–gneissic or sedimentary source area, similar to PM-derived).

Roser & Korsch’s (1988) discriminant function analysis has been carried out on the Manx Group (Fig. 6). In cases where sandstones and mudstones from the same stratigraphic unit have been analysed, the majority of mudstones plot in a different provenance field to the sandstones. Roser & Korsch (1988) state that where sandstones and mudstones plot in different fields, the trend of a line joining the two may resolve any ambiguity over provenance type. A P3 (felsic) source is interpreted where the mudstone has a greater function 1 and a lesser function 2 score than its respective sandstone, and a P4 (recycled) source is indicated by a mudstone with greater function 1 and 2 scores than its paired sandstone. In general, however, the sandstones are thought to provide a more reliable indication of provenance.

With rare exceptions, the majority of Manx Group sandstones plot within the P4 (recycled) field (Fig. 6), supporting the interpretation that they are derived from a craton interior or a recycled orogenic terrane. Mudstones from the Maughold Formation also plot within the P4 (recycled) field. Mudstones
from the Creg Agneash, Injebreck, Lonan, Glen Dhoo and Santon units plot within the P2 (intermediate) and P3 (felsic) fields although, by comparison to the sandstones, these intervals are more appropriately classified as P4 (recycled).

If the results are analysed in more detail it appears that the Glion Cam unit (Tremadoc), the Ny Garvain Formation (early Arenig) and the Creggan Mooar Formation (mid-Arenig) have more immature characteristics in that they stray to the greatest extent from the P4 (recycled) field. This could indicate minor input of less mature detritus such as volcanic material.

The Barrule and Glen Rushen Formation mudstones plot in P1, P2 and P3 fields suggesting that they may have been derived in part from mafic to felsic igneous source areas. However, as they show values similar to mudstones from units containing sandstones with overall P4 associations (Fig. 6) it is perhaps more likely that they too are derived from a P4 (recycled) source area and plot in different fields solely as a result of their fine grain-size.

Sandstone multi-element plots. Floyd et al. (1991) compared greywacke compositions on multi-element variation diagrams normalized to upper continental crust (after Taylor & McLennan 1985) (Fig. 7a) in order to determine sediment source from differences in concentrations of elements. This technique was applied to the Manx Group and Figure 7b–d shows the resultant multi-element plots. The elements are arranged from left to right in order of decreasing ocean residence time and consist of a potentially mobile group (K–Ni) and a more immobile group (Ta–Th). For comparison, average greywackes from passive margin (PM), continental arc/active continental margin (CAAM) and oceanic island arc (OIA) settings normalized to upper continental crust values; (b–d) average Manx Group unit patterns. (b) Lonan-type samples, (c) Agneash-type samples and (d) Injebreck-type samples.

Fig. 6. Provenance discrimination diagrams of Roser & Korsch (1988) with Manx Group sandstones (closed symbols) and mudstones (open symbols) plotted. (a) Lonan-type samples, (b) Agneash-type samples and (c) Injebreck-type samples. Dashed tie-lines between samples indicate sandstones and mudstones are taken from the same turbidite flow.

Fig. 7. Multi-element plots of (a) Floyd et al.’s (1991) average greywacke compositions from passive margin (PM), continental arc/active continental margin (CAAM) and oceanic island arc (OIA) settings normalized to upper continental crust values; (b–d) average Manx Group unit patterns. (b) Lonan-type samples, (c) Agneash-type samples and (d) Injebreck-type samples.
(c) Relative abundances of Hf, Zr and Y. Positive anomalies correlate with the presence of heavy minerals, typical of passive margins.

(d) Relative abundance of Sr and P. Peaks suggest mafic input corresponding to an active margin setting. Troughs are indicative of passive margins.

Within individual Manx Group units, different samples show similar multi-element patterns (Burnett 1999) and therefore average patterns are considered representative (Fig. 7). However, four samples were not included in the averages because of their unusual compositional trends, explained by very low element concentrations as a result of quartz dilution (Burnett 1999).

On the basis of Nb/Nb* ratios and relative abundances of Ti and P, the Manx Group shows characteristics of PM or CAAM settings. In general there is more evidence of PM affinity, specifically in the relative abundances of Sc, Hf, Zr, Y, and Sr (Fig. 7). However, CAAM attributes are indicated by elevated values of V, Cr and Ni, particularly in the Glion Cam, Santon, Ny Garvain and Lady Port units, possibly showing that they contain minor amounts of mafic material.

Rare earth element analysis. Rare earth elements (REE) are considered to be immobile under most conditions of weathering, diagenesis and up to moderate levels of metamorphism (e.g. Cullers et al. 1974). This property has led to several studies of REE variation to determine the tectonic setting of deposition (e.g. McLennan et al. 1990).

The REE are commonly grouped according to their atomic mass into those termed light (LREE) and heavy (HREE), La–Sm and Gd–Lu, respectively. The abundances of eleven REE (La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Er, Yb and Lu) were determined for 36 samples from the Manx Group. The results of this analysis are shown in Figure 8 for each stratigraphic unit from which the samples were collected. They are normalized to chondrite abundance and plotted along with Post-Archaean Average Australian Shale (PAAS) to aid comparison. Eu anomalies are expressed as Eu/Eu* values using the method of McLennan et al. (1990):

\[
\text{Eu/Eu*} = \frac{\text{Eu}}{\sqrt{\left(\text{Sm} \times \text{Gd}\right)}}
\]

where Eu* represents the expected Eu abundance for a smooth chondrite-normalized (N) REE pattern.

In general, the Manx Group shows similar chondrite-normalized REE abundance patterns to PAAS although the mudstone samples are all enriched relative to PAAS while the sandstones are depleted due to quartz dilution. All the samples are LREE enriched relative to HREE with flat HREE patterns and, apart from two samples mentioned below, display negative Eu anomalies (Eu/Eu* values <1). This suggests that the Manx Group is composed of sediment derived from old upper continental crust and/or young differentiated arc material. According to McLennan et al. (1990) these provenance components may be found in several basin types, but rarely in a fore-arc setting. Based on other geochemical and petrographical data discussed herein, it is considered unlikely that the Manx Group was derived from young differentiated arc material and therefore old upper continental crust is the most likely source.

The two samples with slightly positive Eu anomalies are P6a and HM2, from the Lonan and Ny Garvain Formations,
respectively. This may reflect that there has been some influx of material from a juvenile island arc. However, as the Lonan Formation also provides a sample with the second largest negative Eu anomaly (P18a on Fig. 8a), this indicates the potential for variation within a single stratigraphic unit. The positive Eu anomalies are therefore more likely to be the result of minor and sporadic input of detritus from an eroded palaeovolcanic sequence. Overall REE concentrations and Eu/Eu* ratios in the Manx Group are broadly consistent with sediment deposited on a passive margin.

Geochemical summary. Assuming that the provenance indicators used here accurately discriminate between passive margin and active continental margin sediments, the overall indication is that the Manx Group was deposited on a passive margin. However, the Lonan and Ny Garvain Formations (early Arenig) and, to a degree the Glion Cam (Tremadoc), Santon (early Arenig) and Lady Port (late Arenig) units, show evidence of limited input from material more typical of an active margin.

Summary of provenance indicators

Petrographical study reveals that the Manx Group is dominated by quartzose detritus. Although present in only low concentrations, feldspar is mostly alkaline in composition and lithic fragments are primarily of polycrystalline quartz (granite, quartz schist, chert and quartz arenite). Volcanic lithic fragments are rare but of acidic composition and appear to be palaeovolcanic rather than juvenile. Rounded grains have occasionally been observed in thin section which, together with the very mature suite of heavy minerals present, indicates that at least some of the Manx Group detritus is poly cyclic. This evidence is consistent with the erosion of mature sedimentary sequences with a minor palaeovolcanic component and the breakdown of granites and acidic gneisses typical of continental basement. The Glion Cam unit (Tremadoc) and Santon Formation (early Arenig) are the most immature units but still show similar provenance characteristics to the rest of the Manx Group.

Geochemical data are broadly consistent with the petrographical interpretation although the provenance signal is more mixed. The dominance of SiO₂, generally low Fe₂O₃T and MgO concentrations and REE patterns with negative Eu anomalies suggest that the Manx Group is dominated by mature, cratonic detritus deposited on a passive margin. However, although the evidence is limited, some provenance indicators such as the multi-element plots of Floyd et al. (1991), and two samples that lack a Eu anomaly, indicate that a minor amount of continental arc or active continental margin volcanic material may also have been supplied to the basin. This is true of the oldest units (Glion Cam, Lonan, Ny Garvain and Santon) which are Tremadoc–early Arenig in age and in the youngest formation (Lady Port) which is late Arenig.

Tectonic setting of the Manx Group

The majority of the Manx Group comprises mature cratonic detritus typical of a passive margin. However, a minor igneous component has been identified and it is important to know whether this was derived from a contemporaneous source or from palaeovolcanic rocks. Stone & Evans (1997) analysed three samples from the Manx Group for εNd isotope values. Two samples from the Santon Formation showed no juvenile input (values of –6.0 and –5.1) but a third sample from the Mull Hill Formation was positive (+2.1), possibly indicating input from coeval mantle-derived volcanism. However, Stone et al. (1999) suggested this result be treated as provisional as it was obtained in the vicinity of a felsic dyke. The otherwise mature characteristics of the Mull Hill Formation also cast doubt on the validity of the analysis.

Within the several thousand metres of succession that make up the Manx Group, only two intervals of volcanic rocks have been identified; no more than a few tens of metres thick and mostly consisting of highly altered tuffs. One of these intervals, known as the Peel volcanics, has been dated as early Arenig, similar to the Santon Formation, on the basis of acritarchs (Molyneux 1999). The other volcanic interval at Ballaquane has not been dated and there is a possibility that it is not part of the Manx Group succession. Both these volcanics are exposed close to a major fault which separates the Manx Group from Silurian strata (Morris et al. 1999) and their significance remains questionable.

There are a number of tectonic hypotheses that could explain the presence of a detrital component of volcanic origin within what are otherwise mature sediments.

1. Deposition in a fore-arc basin of a continental island arc or active continental margin where volcanic material was trapped locally so as not to reach the main part of the basin while rivers carrying mature sediment from the craton interior bypassed the arc. A potential problem with this model is that airborne volcanic material should still have been distributed regionally.

2. Deposition on the continental side of a back-arc basin, the majority of the detritus being derived from the continent (Quirk & Kimbell 1997). Volcanic activity within the back-arc basin itself or a minor component from the island arc may have provided some juvenile detritus. However, the general absence of airborne volcanic material in the Manx Group is again difficult to explain.

3. Deposition during transition from a passive margin to a fore-arc basin setting. This would allow the continued deposition of mature detritus from the craton interior or from local continental crust, as well as sporadic but gradually increasing influxes of juvenile volcanic material. The difficulty in recognizing such transitional situations has been noted by Mack (1984). However, the Manx Group appears to show an overall decrease in volcanic influence upwards in the succession, the opposite trend to that expected during such a transition.

4. Deposition on a passive margin (e.g. Quirk & Burnett 1999). Such a setting would allow large quantities of mature sediment from the continental interior to reach the depositional basin. In addition, limited amounts of non-coeval igneous detritus may have been supplied from a dissected late Precambrian volcanic center (Thorpe 1979).

The majority of the Manx Group has petrographical and geochemical characteristics indicative of passive margin conditions and therefore hypothesis 4 is favoured. The source of the minor volcanic detritus has not been positively identified. Van Staal et al. (1998) speculate that the Penobscot oceanic island arc extended from the Appalachian to the Avalonian sector of the Iapetus during the Cambrian and was obducted onto the Avalonian margin during the Tremadoc. Although this would potentially account for the presence of volcanic material in the Manx Group basin, it is difficult to reconcile
this with the strong passive margin signal in geochemical data and general lack of volcanic detritus observed in thin section. The presence of small amounts of typically silicic volcanogenic material is more easily explained by the erosion of the late Precambrian continental arc identified on the northern margin of Gondwana by Thorpe (1979).

Although the distance the turbidites of the Manx Group have travelled remains unconstrained, the interpretation that the sediment was deposited on a passive margin has implications for when Eastern Avalonia rifted from Gondwana. The supply of detritus from a continental interior with little incorporation of volcanic material into the basin suggests that Eastern Avalonia remained attached to Gondwana throughout deposition of the Manx Group. This indicates that rifting occurred no earlier than latest Arenig and therefore probably in the Llanvirn, an interpretation consistent with patterns of provinciality in benthic fauna (Cocks 2000).

In summary, the depositional setting of the Manx Group is envisaged to be a passive margin receiving detritus from continental basement and quartzose sediments. A minor volcanic component in the Glion Cam, Lonan, Santon, Ny Garvain and Lady Port units is thought to have been derived from erosion of an ancient active continental margin incorporated within Gondwana but, without further εNd data, the existence of contemporaneous volcanic activity cannot entirely be discounted.

Manx Group regional correlates

The Skiddaw Group is approximately the same age as the Manx Group (Molyneux 1999) and it too is interpreted to have been deposited on a passive margin fed by a recycled orogenic terrane (Cooper et al. 1995). Although a similar tectonic setting is envisaged, the source of the Manx Group appears to be more mature than that of the Skiddaw Group (Moore 1992; Burnett 1999) probably because the two basins were receiving detritus from different river systems. The Ribband Group of SE Ireland can also be correlated with the Manx Group and several gross similarities are identifiable in their respective stratigraphies (McConnell et al. 1999). The Ingleton Group of northwest England is thought to be contemporaneous with the Manx and Skiddaw Groups (Stone et al. 1999). Petrographical and geochemical work by Moore (1992) suggests that it contains a significant volcanogenic component. In addition, marked differences also occur in εNd values between the Skiddaw and Ingleton Groups (Stone & Evans 1997; Miller & O’Nions 1984). The implication is that the Ingleton Group is unlikely to directly correlate with either the Manx or Skiddaw Group sequences.

Hughes & Kokelaar (1993) report that the oldest volcanogenic strata in the Skiddaw Group is of early Llanvirn age, much younger than in the Manx Group. However, the Ribband Group does contain volcanics interpreted to be of an early Arenig age. These consist of a thickness of at least 180 m of basalt and dolerite thought to be subduction related (McConnell & Morris 1997). The implication is that there was significant variation in the nature and timing of volcanism along the northern margin of Eastern Avalonia.

Another difficulty exists in relating the tectonic evolution of Wales with that of other parts of the northern margin of Eastern Avalonian. The late Tremadoc Rhobell Volcanic Complex records the onset of ensialic arc volcanism in Wales, considered to mark the beginning of subduction of Iapetus oceanic crust beneath the Avalonian margin (Kokelaar 1979). This volcanism ceased in early Arenig times and was replaced by tholeiitic volcanism, interpreted by Fitton et al. (1982) to have developed on thinned continental crust behind an arc stretching from Leinster to the Lake District. It is therefore difficult to reconcile the apparent passive margin setting of the Manx and Skiddaw Groups with contemporaneous arc-related tectonics in Wales. One possible answer is that the Welsh volcanics have been displaced a considerable distance laterally along large strike-slip faults during the oblique convergence of Eastern Avalonia against Laurentia (Kokelaar 1988). Such a model might also explain important differences in the lithofacies and volcanic content of the Manx, Skiddaw and Ribband Groups (Quirk & Burnett 1999). The difficulty in assessing the importance of fault-bounded terranes should not be underestimated when trying to constrain models for the evolution of Eastern Avalonia.

Conclusions

The provenance of the Manx Group has been assessed using integrated petrographical and geochemical studies, the results of which are largely in agreement. This approach has revealed the dominance of mature, quartzose sandstones within the Manx Group, probably derived from a craton interior. A minor input of igneous detritus has been detected in the Glion Cam unit (Tremadoc), Ny Garvain, Lonan and Santon Formations (early Arenig) and Lady Port Formation (late Arenig). The petrographical and geochemical data provide little evidence for the existence of a contemporaneous volcanic arc and the igneous material is interpreted instead to have been derived from a palaeovolcanic source.

The provenance characteristics suggest that the Manx Group was deposited on a passive margin which received large amounts of mature detritus from the interior of Gondwana in addition to minor volcanic material from a deeply dissected late Precambrian continental margin arc.

The main implication of this work is that Eastern Avalonia remained attached to Gondwana during the Tremadoc and Arenig and that Iapetus oceanic crust did not subduct beneath the region until later, probably during the Llanvirn. This appears to contradict evidence from other areas, particularly Wales where subduction-related volcanism occurs in the late Tremadoc. Many of the difficulties in understanding the relationship between these different areas may be due to the separate terranes being juxtaposed along large strike-slip faults during the Caledonian orogeny.

We would like to thank D.S. Stow, H.A. Armstrong and J. Wood for helpful comments and suggestions in reviewing this paper. In addition, the authors are grateful to Nigel Woodcock, Rob Barnes, Greg Power, John Morris, Mike Fowler, Gilbert Kelling and Rob Strachan for valuable assistance and discussion. D.I.B. acknowledges the receipt of a grant from the Isle of Man Government Department of Education and financial assistance from the Manx Heritage Foundation, the Isle of Man Department of Tourism and Leisure and Oxford Brookes University.

References

Received 21 October 2001; revised typescript accepted 8 August 2001. Scientific editing by Anthony Cohen.